Sobre la implementación de algoritmos de Machine Learning en las ciencias penales y sus implicaciones jurídicas

Main Article Content

Alejandro Salinas de León

Abstract

The option of using Machine Learning algorithms in legal practice and, above all, in criminal procedure, is constantly increasing and represents a challenge for countries that still do not incorporate certain technological tools in their jurisdictional systems. In this sense, this article refers to the advantages and disadvantages of introducing computer algorithms in the accusatory criminal justice system in Mexico.

Downloads

Download data is not yet available.

Article Details

How to Cite
Salinas de León, A. . (2020). Sobre la implementación de algoritmos de Machine Learning en las ciencias penales y sus implicaciones jurídicas. The Mexican Journal of Criminal Sicences , 3(12), 191–204. https://doi.org/10.57042/rmcp.v3i12.373
Section
Visions for the future

Métricas

References

Bathaee, Y. (2018). “The Artificial Intelligence Black Box and the Failure of Intent and Causation.” Harvard Journal of Law & Technology, 890-938.

Forbes (4 de Junio de 2019). Destituyen a 15 jueces por casos de corrupción y acoso sexual. Obtenido de Forbes: https://www.forbes.com.mx/destituyen-a-15-jueces-por-acoso-y-corrupcion/

Grace, J. (15 de noviembre de 2019). “Machine Learning Technologies and Their Inherent Human Rights Issues in Criminal Justice Contexts.” Obtenido de SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3487454

Hao, K. (21 de enero de 2019). “AI is sending people to jail—and getting it wrong.” Obtenido de Technology Review: https://www.technologyreview.com/2019/01/21/137783/algorithms-criminal-justice-ai/

IBM. (2018, mayo 13). “Watson for Genomics.” Retrieved from IBM: https://www.ibm.com/mx-es/marketplace/watson-for-genomics

Kleiner, K. (1 de septiembre de 2011). “Lunchtime Leniency: Judges’ Rulings Are Harsher When They Are Hungrier.” Obtenido de Scientific American: https://www.scientificamerican.com/article/lunchtime-leniency/

Marr, B. (23 de mayo de 2018). “How AI And Machine Learning Are Transforming Law Firms And The Legal Sector.” Obtenido de Forbes: https://www.forbes.com/sites/bernardmarr/2018/05/23/how-ai-and-machine-learning-are-transforming-law-firms-and-the-legal-sector/#e-20f26832c38

Marwaha, A. (13 de julio de 2017). “Seven Benefits of Artificial Intelligence for Law Firms.” Obtenido de Law Technology Today: https://www.lawtechnologytoday.org/2017/07/seven-benefits-artificial-intelligence-law-firms/

Masha Medvedeva, M.V. (26 de junio de 2019). “Using machine learning to predict decisions of the European Court of Human Rights.” Obtenido de Artif Intell Law: https://doi.org/10.1007/s10506-019-09255-y

Redacción Sipse. (24 de noviembre de 2016). “Jueces mexicanos, con la espada de Damocles.” Obtenido de Sipsse: https://sipse.com/mexico/jueces-federales-mexico-violencia-inseguridad-231760.html

Rigano, C. (2019). “Using Artificial Intelligence to Address Criminal Justice Needs.” NIJ Journal 280, https:// www.nij.gov/journals/280/Pages/using-artificialintelligence-to-address-criminal-justice-needs.aspx.

Samuel, A.L. (1959). “Some studies in Machine Learning using the Game of Checkers.” IBM Journal of Research and Development, 210-229.

Schmidhuber, J. (2015). “Deep learning in neural networks: An overview.” Neural networks, 85-117.

UDLAP. (15 de marzo de 2018). IGI-MEX Resumen Ejecutivo. Obtenido de UDLAP: https://www.udlap.mx/igimex/resumenejecutivo.aspx

Završnik, A. (20 de February de 2020). “Criminal justice, artificial intelligence systems, and human rights.” ERA Forum 20, 567-583. Obtenido de ERA Forum: https://doi.org/10.1007/s12027-020-00602-0

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.